Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrients ; 15(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37049610

RESUMO

The dipeptide carnosine is a physiologically important molecule in the human body, commonly found in skeletal muscle and brain tissue. Beta-alanine is a limiting precursor of carnosine and is among the most used sports supplements for improving athletic performance. However, carnosine, its metabolite N-acetylcarnosine, and the synthetic derivative zinc-L-carnosine have recently been gaining popularity as supplements in human medicine. These molecules have a wide range of effects-principally with anti-inflammatory, antioxidant, antiglycation, anticarbonylation, calcium-regulatory, immunomodulatory and chelating properties. This review discusses results from recent studies focusing on the impact of this supplementation in several areas of human medicine. We queried PubMed, Web of Science, the National Library of Medicine and the Cochrane Library, employing a search strategy using database-specific keywords. Evidence showed that the supplementation had a beneficial impact in the prevention of sarcopenia, the preservation of cognitive abilities and the improvement of neurodegenerative disorders. Furthermore, the improvement of diabetes mellitus parameters and symptoms of oral mucositis was seen, as well as the regression of esophagitis and taste disorders after chemotherapy, the protection of the gastrointestinal mucosa and the support of Helicobacter pylori eradication treatment. However, in the areas of senile cataracts, cardiovascular disease, schizophrenia and autistic disorders, the results are inconclusive.


Assuntos
Carnosina , Humanos , Carnosina/uso terapêutico , Antioxidantes/metabolismo , Suplementos Nutricionais , Dipeptídeos/metabolismo , Músculo Esquelético/metabolismo , beta-Alanina/farmacologia , beta-Alanina/metabolismo
2.
Molecules ; 28(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838716

RESUMO

Aging is a complex physiological process that can be accelerated by chemical (high blood glucose levels) or physical (solar exposure) factors. It is accompanied by the accumulation of altered molecules in the human body. The accumulation of oxidatively modified and glycated proteins is associated with inflammation and the progression of chronic diseases (aging). The use of antiglycating agents is one of the recent approaches in the preventive strategy of aging and natural compounds seem to be promising candidates. Our study focused on the anti-aging effect of the flavonoid hesperetin, its glycoside hesperidin and its carbohydrate moieties rutinose and rhamnose on young and physiologically aged normal human dermal fibroblasts (NHDFs). The anti-aging activity of the test compounds was evaluated by measuring matrix metalloproteinases (MMPs) and inflammatory interleukins by ELISA. The modulation of elastase, hyaluronidase, and collagenase activity by the tested substances was evaluated spectrophotometrically by tube tests. Rutinose and rhamnose inhibited the activity of pure elastase, hyaluronidase, and collagenase. Hesperidin and hesperetin inhibited elastase and hyaluronidase activity. In skin aging models, MMP-1 and MMP-2 levels were reduced after application of all tested substances. Collagen I production was increased after the application of rhamnose and rutinose.


Assuntos
Hesperidina , Ramnose , Envelhecimento da Pele , Humanos , Colagenases/metabolismo , Hesperidina/farmacologia , Hialuronoglucosaminidase , Elastase Pancreática , Ramnose/farmacologia , Envelhecimento da Pele/efeitos dos fármacos
4.
Photochem Photobiol Sci ; 22(2): 357-369, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36264480

RESUMO

The chronic exposure of skin to ultraviolet (UV) radiation causes adverse dermal reactions, such as erythema, sunburn, photoaging, and cancer, by altering several signalling pathways associated with oxidative stress, inflammation, and DNA damage. One of the possible UV light protection strategies is the use of dermal photoprotective preparations. The plant hormone kinetin (N6-furfuryladenine; KIN) exhibits antioxidant and anti-senescent effects in human cells. Topically applied KIN also reduced some of the clinical signs of photodamaged skin. To improve the biological activities of KIN, several derivatives have been recently prepared and their beneficial effects on cell viability of skin cells exposed to UVA and UVB light were screened. Two potent candidates, 6-(tetrahydrofuran-2-yl)methylamino-9-(tetrahydrofuran-2-yl)purine (HEO) and 6-(thiophen-2-yl)methylamino-9-(tetrahydrofuran-2-yl)purine (HEO6), were identified. Here the effects of KIN, its N9-substituted derivatives the tetrahydropyran-2-yl derivative of KIN (THP), tetrahydrofuran-2-yl KIN (THF), HEO and HEO6 (both THF derivatives) on oxidative stress, apoptosis and inflammation in UVA- or UVB-exposed skin cell was investigated. Human primary dermal fibroblasts and human keratinocytes HaCaT pre-treated with the tested compounds were then exposed to UVA/UVB light using a solar simulator. All compounds effectively prevented UVA-induced ROS generation and glutathione depletion in both cells. HEO6 was found to be the most potent. All compounds also reduced UVB-induced caspase-3 activity and interleukin-6 release. THP and THF exhibited the best UVB protection. In conclusion, our results demonstrated the UVA- and UVB-photoprotective potential of KIN and its derivatives. From this point of view, they seem to be useful agents for full UV spectrum protective dermatological preparations.


Assuntos
Queratinócitos , Pele , Humanos , Cinetina/metabolismo , Cinetina/farmacologia , Pele/efeitos da radiação , Queratinócitos/metabolismo , Antioxidantes/farmacologia , Raios Ultravioleta/efeitos adversos , Inflamação/metabolismo
5.
Photochem Photobiol Sci ; 21(1): 59-75, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837635

RESUMO

The ultraviolet (UV) part of solar radiation can permanently affect skin tissue. UVA photons represent the most abundant UV component and stimulate the formation of intracellular reactive oxygen species (ROS), leading to oxidative damage to various biomolecules. Several plant-derived polyphenols are known as effective photoprotective agents. This study evaluated the potential of quercetin (QE) and its structurally related flavonoid taxifolin (TA) to reduce UVA-caused damage to human primary dermal fibroblasts (NHDF) and epidermal keratinocytes (NHEK) obtained from identical donors. Cells pre-treated with QE or TA (1 h) were then exposed to UVA light using a solar simulator. Both flavonoids effectively prevented oxidative damage, such as ROS generation, glutathione depletion, single-strand breaks formation and caspase-3 activation in NHDF. These protective effects were accompanied by stimulation of Nrf2 nuclear translocation, found in non-irradiated and irradiated NHDF and NHEK, and expression of antioxidant proteins, such as heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and catalase. For most parameters, QE was more potent than TA. On the other hand, TA demonstrated protection within the whole concentration range, while QE lost its protective ability at the highest concentration tested (75 µM), suggesting its pro-oxidative potential. In summary, QE and TA demonstrated UVA-protective properties in NHEK and NHDF obtained from identical donors. However, due to the in vitro phototoxic potential of QE, published elsewhere and discussed herein, further studies are needed to evaluate QE safety in dermatological application for humans as well as to confirm our results on human skin ex vivo and in clinical trials.


Assuntos
Flavonoides , Quercetina , Fibroblastos , Flavonoides/metabolismo , Humanos , Queratinócitos , Estresse Oxidativo , Quercetina/análogos & derivados , Quercetina/farmacologia , Pele/metabolismo , Raios Ultravioleta
6.
Int J Radiat Biol ; 97(10): 1383-1403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34338112

RESUMO

PURPOSE: Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix metalloproteinase, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoaing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects. CONCLUSIONS: This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signaling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activation and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in the skin needs to be performed carefully.


Assuntos
Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Raios Ultravioleta , Humanos , Queratinócitos , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
7.
Free Radic Biol Med ; 164: 258-270, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33453360

RESUMO

In this contribution, a comprehensive study of the redox transformation, electronic structure, stability and photoprotective properties of phytocannabinoids is presented. The non-psychotropic cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN), cannabichromene (CBC), and psychotropic tetrahydrocannabinol (THC) isomers and iso-THC were included in the study. The results show that under aqueous ambient conditions at pH 7.4, non-psychotropic cannabinoids are slight or moderate electron-donors and they are relatively stable, in the following order: CBD > CBG ≥ CBN > CBC. In contrast, psychotropic Δ9-THC degrades approximately one order of magnitude faster than CBD. The degradation (oxidation) is associated with the transformation of OH groups and changes in the double-bond system of the investigated molecules. The satisfactory stability of cannabinoids is associated with the fact that their OH groups are fully protonated at pH 7.4 (pKa is ≥ 9). The instability of CBN and CBC was accelerated after exposure to UVA radiation, with CBD (or CBG) being stable for up to 24 h. To support their topical applications, an in vitro dermatological comparative study of cytotoxic, phototoxic and UVA or UVB photoprotective effects using normal human dermal fibroblasts (NHDF) and keratinocytes (HaCaT) was done. NHDF are approx. twice as sensitive to the cannabinoids' toxicity as HaCaT. Specifically, toxicity IC50 values for CBD after 24 h of incubation are 7.1 and 12.8 µM for NHDF and HaCaT, respectively. None of the studied cannabinoids were phototoxic. Extensive testing has shown that CBD is the most effective protectant against UVA radiation of the studied cannabinoids. For UVB radiation, CBN was the most effective. The results acquired could be used for further redox biology studies on phytocannabinoids and evaluations of their mechanism of action at the molecular level. Furthermore, the UVA and UVB photoprotectivity of phytocannabinoids could also be utilized in the development of new cannabinoid-based topical preparations.


Assuntos
Antioxidantes , Canabidiol , Antioxidantes/farmacologia , Dronabinol , Humanos
8.
J Photochem Photobiol B ; 209: 111948, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32679512

RESUMO

The harmful effects of low energy UVA photons (315-400 nm) are associated with the massive production of reactive oxygen species resulting in oxidative stress. In response to oxidative damage, NF-E2-related factor 2 (Nrf2) is translocated to the nucleus and drives the expression of detoxication and antioxidant enzymes. UVA's effect on Nrf2 has been quite well characterised in dermal fibroblasts. However, there is a dearth of such information for keratinocytes. This study aimed to evaluate and compare the effect of UVA radiation on the Nrf2 pathway and oxidative stress related proteins in primary human dermal fibroblasts (NHDF), epidermal keratinocytes (NHEK) and human keratinocyte cell line HaCaT. NHDF were exposed to doses of 2.5-7.5 J/cm2, NHEK and HaCaT to 10-20 J/cm2 using a solar simulator. Effects on Nrf2 translocation were evaluated after 1, 3 and 6 h and Nrf2-controlled proteins (heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione reductase (GSR), glutathione-S-transferase (GST), interleukine-6 (IL-6), and matrix metalloproteinases (MMP-1, MMP-2)) after 3, 6 and 24 h. The results showed the fastest Nrf2 translocation was in UVA-irradiated HaCaT (1 h), persisting until the subsequent time interval (3 h), while in primary keratinocytes the effect of radiation was minimal. In NHDF, UVA-stimulated Nrf2 translocation was conspicuous 3 h after UVA treatment. In NHDF, most of the studied proteins (NQO1, HO-1, GSR, GSTM1 and MMP-1) showed the highest level 24 h after UVA exposure, except for MMP-2 and IL-6 which had their highest level at a shorter time incubation interval (3 h). In NHEK, NQO1, HO-1 and GST were increased 6 h after UVA exposure, GSR and MMP-2 level was slightly below or above the control level, and MMP-1 and IL-6 increased at shorter time intervals. When comparing NHEK and HaCaT, these cells displayed contrary responses in most of the Nrf2-controlled proteins. Thus, primary keratinocytes cannot be replaced with HaCaT when studying cell signalling such as the Nrf2 driven pathway and Nrf2-controlled proteins.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos da radiação , Pele/efeitos da radiação , Raios Ultravioleta , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Transporte Proteico , Pele/citologia , Pele/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-32188958

RESUMO

Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.


Assuntos
Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Neoplasias Cutâneas/prevenção & controle , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos , Humanos , Neoplasias Cutâneas/etiologia
10.
Arch Dermatol Res ; 311(6): 477-490, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31079190

RESUMO

The exposure of naked unprotected skin to solar radiation may result in numerous acute and chronic undesirable effects. Evidence suggests that silymarin, a standardized extract from Silybum marianum (L.) Gaertn. seeds, and its major component silybin suppress UVB-induced skin damage. Here, we aimed to investigate the UVA-protective effects of silymarin's less abundant flavonolignans, specifically isosilybin (ISB), silychristin (SC), silydianin (SD), and 2,3-dehydrosilybin (DHSB). Normal human dermal fibroblasts (NHDF) pre-treated for 1 h with flavonolignans were then exposed to UVA light using a solar simulator. Their effects on reactive oxygen species (ROS), carbonylated proteins and glutathione (GSH) level, caspase-3 activity, single-strand breaks' (SSBs) formation and protein level of matrix metalloproteinase-1 (MMP-1), heme oxygenase-1 (HO-1), and heat shock protein (HSP70) were evaluated. The most pronounced preventative potential was found for DHSB, a minor component of silymarin, and SC, the second most abundant flavonolignan in silymarin. They had significant effects on most of the studied parameters. Meanwhile, a photoprotective effect of SC was mostly found at double the concentration of DHSB. ISB and SD protected against GSH depletion, the generation of ROS, carbonylated proteins and SSBs, and caspase-3 activation, but had no significant effect on MMP-1, HO-1, or HSP70. In summary, DHSB and to a lesser extent other silymarin flavonolignans are potent UVA-protective compounds. However, due to the in vitro phototoxic potential of DHSB published elsewhere, further studies are needed to exclude phototoxicity for humans as well as to confirm our results on human skin ex vivo and in vivo.


Assuntos
Citoproteção/efeitos dos fármacos , Silimarina/análogos & derivados , Protetores Solares/farmacologia , Raios Ultravioleta/efeitos adversos , Caspase 3/metabolismo , Células Cultivadas , Quebras de DNA de Cadeia Simples/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Carbonilação Proteica/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Silimarina/farmacologia , Pele/efeitos da radiação
11.
Molecules ; 24(6)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875758

RESUMO

Silybum marianum (L.) is a medicinal plant traditionally used in treatment of liver disorders. In last decades, silymarin (SM), a standardized extract from S. marianum seeds has been studied for its dermatological application, namely for UVB-protective properties. However, information on SM and its polyphenols effect on activity of enzymes participating in the (photo)aging process is limited. Therefore, evaluation of SM and its flavonolignans potential to inhibit collagenase, elastase, and hyaluronidase in tube tests was the goal of this study. The antioxidant and UV screening properties of SM and its flavonolignans silybin, isosilybin, silydianin, silychristin and 2,3-dehydrosilybin (DHSB) were also evaluated by a DPPH assay and spectrophotometrical measurement. DHSB showed the highest ability to scavenge DPPH radical and also revealed the highest UVA protection factor (PF-UVA) that corresponds with its absorption spectrum. SM and studied flavonolignans were found to exhibit anti-collagenase and anti-elastase activity. The most potent flavonolignan was DHSB. None of studied flavonolignans or SM showed anti-hyaluronidase activity. Our results suggest that SM and its flavonolignans may be useful agents for skin protection against the harmful effects of full-spectrum solar radiation including slowing down skin (photo)aging.


Assuntos
Flavonolignanos/química , Extratos Vegetais/química , Silimarina/química , Pele/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Flavonolignanos/isolamento & purificação , Humanos , Sementes/química , Silimarina/isolamento & purificação , Pele/patologia , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
14.
J Appl Toxicol ; 39(5): 773-782, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604520

RESUMO

Human skin explant (HSE) seems to be a useful model for dermatological/cosmetic testing. HSE prepared from donor superfluous skin from plastic surgery operations is cheap and easily obtainable compared to reconstructed models. The HSE use, however, may be limited by the degeneration processes during cultivation. The aim was to monitor changes in metabolic activity and selected apoptotic, inflammatory and antioxidant parameters during 7 day cultivation. The significant changes were found in the superoxide dismutase-2 level from day 5, glutathione S-reductase level from day 6, metabolic activity and fibulin-5 level from day 4, cyclooxygenase-2, interleukin-6 and interleukin-10 from day 1 to 2. Other selected markers (lipid peroxidation products and glutathione level, glutathione S-transferase, catalase, superoxide dismutase and glutathione S-reductase activity, glutathione peroxidase and glutathione S-reductase levels) were not modified significantly due to high inter-individual variability of skin donors. The HSE microstructure as well as cytokeratin-10 and proliferation marker Ki67 expression was also only minimally affected during cultivation. Collectively, the results demonstrate that HSE represents a good model for short-term studies focused on the physical and chemical agent toxicity, protective potential of compounds or metabolic biotransformation. However, reduced metabolic activity, increased inflammation and the high inter-individual variability and sensitivity of donors have to be taken into consideration.


Assuntos
Antioxidantes/metabolismo , Biomarcadores/metabolismo , Pele , Técnicas de Cultura de Tecidos/métodos , Ciclo-Oxigenase 2/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , Interleucina-6/metabolismo , Modelos Biológicos , Pele/imunologia , Pele/metabolismo , Pele/patologia , Superóxido Dismutase/metabolismo , Fatores de Tempo
15.
Molecules ; 24(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586949

RESUMO

Silymarin is a well-known standardized extract from the seeds of milk thistle (Silybum marianum L., Asteraceae) with a pleiotropic effect on human health, including skin anticancer potential. Detailed characterization of flavonolignans properties affecting interactions with human skin was of interest. The partition coefficients log Pow of main constitutive flavonolignans, taxifolin and their respective dehydro derivatives were determined by a High Performance Liquid Chromatography (HPLC) method and by mathematical (in silico) approaches in n-octanol/water and model lipid membranes. These parameters were compared with human skin intake ex vivo. The experimental log Pow values for individual diastereomers were estimated for the first time. The replacement of n-octanol with model lipid membranes in the theoretical lipophilicity estimation improved the prediction strength. During transdermal transport, all the studied compounds permeated the human skin ex vivo; none of them reached the acceptor liquid. Both experimental/theoretical tools allowed the studied polyphenols to be divided into two groups: low (taxifolin, silychristin, silydianin) vs. high (silybin, dehydrosilybin, isosilybin) lipophilicity and skin intake. In silico predictions can be usefully applied for estimating general lipophilicity trends, such as skin penetration or accumulation predictions. However, the theoretical models cannot yet provide the dermal delivery differences of compounds with very similar physico-chemical properties; e.g., between diastereomers.


Assuntos
Derme/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Polifenóis/administração & dosagem , Polifenóis/farmacologia , /química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Permeabilidade , Polifenóis/química , Termodinâmica
16.
Eur J Med Chem ; 150: 946-957, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29604584

RESUMO

Eleven 6-furfurylaminopurine (kinetin, Kin) derivatives were synthesized to obtain biologically active compounds. The prepared compounds were characterized using 1H NMR, mass spectrometry combined with HPLC purity determination and elemental C, H, N analyses. The biological activity of new derivatives was tested on plant cells and tissues in cytokinin bioassays, such as tobacco callus, detached wheat leaf chlorophyll retention bioassay and Amaranthus bioassay. The selected compounds were subsequently tested on normal human dermal fibroblasts (NHDF) and keratinocyte cell lines (HaCaT) to exclude possible phototoxic effects and, on the other hand, to reveal possible UVA and UVB photoprotective activity. The protective antioxidant activity of the prepared cytokinin derivatives was further studied and compared to previously prepared antisenescent compound 6-furfurylamino-9-(tetrahydrofuran-2-yl)purine (Kin-THF) using induced oxidative stress (OS) on nematode Caenorhabditis elegans damaged by 5-hydroxy-1,4-naphthoquinone (juglone), a generator of reactive oxygen species. The observed biological activity was interpreted in relation to the structure of the prepared derivatives. The most potent oxidative stress protection of all the prepared compounds was shown by 6-(thiophen-2-ylmethylamino)-9-(tetrahydrofuran-2-yl)purine (6) and 2-chloro-6-furfurylamino-9-(tetrahydrofuran-2-yl)purine (9) derivatives and the results were comparable to Kin-THF. Compounds 6 and 9 were able to significantly protect human skin cells against UV radiation in vitro. Both the derivatives 6 and 9 showed higher protective activity in comparison to previously known structurally similar compounds Kin and Kin-THF. The obtained results are surprising due to the fact that the prepared compounds showed to be inactive in the ORAC assay which proved that the compounds did not act as direct antioxidants as they were unable to directly scavenge oxygen radicals.


Assuntos
Citocininas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Pele/efeitos dos fármacos , Raios Ultravioleta , Citocininas/síntese química , Citocininas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Relação Estrutura-Atividade
17.
Arch Dermatol Res ; 310(5): 413-424, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29564550

RESUMO

Exposure to solar radiation is a major cause of environmental human skin damage. The main constituent of solar UV light is UVA radiation (320-400 nm); however, the need for protection against UVA has been marginalized for a long time. As a result, there is still a lack of useful agents for UVA protection. In this study, the effect of silymarin (SM) and its main constituent silybin (SB) pre-treatment on UVA-stimulated damage to primary human dermal fibroblasts were carried out. The cells were pre-treated for 1 h with SB or SM and then were exposed to UVA light, using a solar simulator. The effect of SB and SM on reactive oxygen species (ROS) and glutathione (GSH) level, caspase-3 activity, single-strand breaks (SSB) formation and protein level of matrix metalloproteinase-1 (MMP-1), heme oxygenase-1 (HO-1), and heat shock protein (HSP70) was evaluated. Treatment with both SM and SB resulted in a reduction in UVA-stimulated ROS generation and SSB production, as well as in the prevention of GSH depletion, a decrease in the activation of caspase-3 and protein level of MMP-1. They also moderately increased HO-1 level and reduced HSP70 level. Our data showed that both SM and SB are non-phototoxic and have UVA-photoprotective potential and could be useful agents for UV-protective dermatological preparations.


Assuntos
Fibroblastos/patologia , Lesões por Radiação/tratamento farmacológico , Silimarina/uso terapêutico , Pele/patologia , Caspase 3/metabolismo , Células Cultivadas , Dano ao DNA , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Silibina , Pele/efeitos da radiação , Luz Solar , Raios Ultravioleta/efeitos adversos
18.
J Photochem Photobiol B ; 178: 530-536, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29247925

RESUMO

Skin explants are a suitable model which can replace dermatological experiments on animals or human volunteers. In this study, we searched for a fast, cheap and reproducible method for screening skin explant viability after treatment with UVA radiation or/and chemical agents. We compared frequently used methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR) and lactate dehydrogenase (LDH) activity assay with a rarely used 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) assay for the evaluation of UVA radiation and/or chlorpromazine and 8-methoxypsoralen effect as model agents. Histological analysis of skin explants was also performed by a simple haematoxylin-eosin method. Only the TTC assay was able to show the toxicity of model agents in a dose- and concentration-dependent manner. LDH assay was partially able to demonstrate results comparable to the TTC method, however, the agents' effect was less pronounced. The MTT and NR assays completely failed in the evaluation. Haematoxylin-eosin staining showed discrete structural changes in samples treated with UVA alone and CPZ+UVA, but only after 48h. Therefore, the method is not useful for screening of toxic or phototoxic effects either. In conclusion, the TTC assay was the most suitable for the evaluation of toxicity or phototoxicity in ex vivo skin.


Assuntos
Bioensaio , Clorpromazina/toxicidade , Metoxaleno/toxicidade , Raios Ultravioleta , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Humanos , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Pele/citologia , Pele/efeitos dos fármacos , Pele/patologia , Sais de Tetrazólio/química
19.
Photochem Photobiol ; 93(5): 1240-1247, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28303596

RESUMO

Quercetin, one of the most abundant polyphenols in the plant kingdom has been shown to be photodegraded on exposure to UV light. Despite the fact, it is a component of several dermatological preparations. Its phototoxic potential has not been evaluated to date. The aim of this study was to assess whether photo-induced degradation of quercetin is linked to phototoxic effects on living cells. Its dihydro derivative, taxifolin, was included in the study. For evaluation, the 3T3 Neutral Red Uptake Phototoxicity Test according to OECD TG 432 was used. To better approximate human skin, HaCaT keratinocytes, normal human epidermal keratinocytes and dermal fibroblasts were used, apart from the Balb/c 3T3 cell line. Quercetin showed a dose-dependent photodegradation in aqueous and organic environments and a phototoxic effect on all used cells. Quercetin pretreatment and following UVA exposure resulted in increased reactive oxygen species production and intracellular glutathione level depletion in human dermal fibroblasts. Taxifolin was found completely nonphototoxic and photostable. As only in vitro methodology was used, further studies using 3D skin models and/or human volunteers are needed to confirm whether exposure to sunlight, tanning sunbeds and/or phototherapy in people using cosmetics containing quercetin is a health risk.


Assuntos
Quercetina/análogos & derivados , Quercetina/toxicidade , Células 3T3 , Animais , Células Cultivadas , Meios de Cultura , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Quercetina/química , Pele/citologia , Pele/efeitos dos fármacos , Relação Estrutura-Atividade , Raios Ultravioleta
20.
Artigo em Inglês | MEDLINE | ID: mdl-27833172

RESUMO

BACKGROUND AND OBJECTIVES: Recently, we described an inverse association between cranberry supplementation and serum prostate specific antigen (PSA) in patients with negative biopsy for prostate cancer (PCa) and chronic nonbacterial prostatitis. This double blind placebo controlled study evaluates the effects of cranberry consumption on PSA values and other markers in men with PCa before radical prostatectomy. METHODS: Prior to surgery, 64 patients with prostate cancer were randomized to a cranberry or placebo group. The cranberry group (n=32) received a mean 30 days of 1500 mg cranberry fruit powder. The control group (n=32) took a similar amount of placebo. Selected blood/urine markers as well as free and total phenolics in urine were measured at baseline and on the day of surgery in both groups. Prostate tissue markers were evaluated after surgery. RESULTS: The serum PSA significantly decreased by 22.5% in the cranberry arm (n=31, P<0.05). A trend to down-regulation of urinary beta-microseminoprotein (MSMB) and serum gamma-glutamyltranspeptidase, as well as upregulation of IGF-1 was found after cranberry supplementation. There were no changes in prostate tissue markers or, composition and concentration of phenolics in urine. CONCLUSIONS: Daily consumption of a powdered cranberry fruit lowered serum PSA in patients with prostate cancer. The whole fruit contains constituents that may regulate the expression of androgen-responsive genes.


Assuntos
Adenocarcinoma/dietoterapia , Neoplasias da Próstata/dietoterapia , Vaccinium macrocarpon , Adenocarcinoma/sangue , Adenocarcinoma/urina , Idoso , Biomarcadores Tumorais/metabolismo , Suplementos Nutricionais , Método Duplo-Cego , Regulação para Baixo , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Cuidados Pré-Operatórios , Antígeno Prostático Específico/metabolismo , Prostatectomia/métodos , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/urina , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...